Rotator Cuff, Labrum, & Biceps Injuries

38th Annual Workers Compensation Seminar October 3, 2012 Jacob S. Stueve MD

Shoulder Injuries in Workers Compensation Population

Kansas

- Department of Labor 2011
 - > 3,459 shoulder claims
 - > 23%* upper extremity injuries
 - > Mean medical \$18,111

Shoulder Injuries in Workers Compensation Population

- 29% of all upper extremity claims
- 54 of 10,000 full time equivalents
- Cost \$10,776 per claim
- Avg 244 lost work days

Silverstein et. al 8 year data from Washington state 1987-95

Workers Comp Injury Claims Rotator Cuff Injury

 2nd most common reported specific injury

Significant Cost (Specialist Plug) WC Rotator cuff repair Avg cost \$52,500 Avg 14 months injury to full return to work Orthopaedic referral immediate diagnosis Avg cost \$24,900 Avg 7 months injury to full return to work "Savoie et. al. JSES 1996

Clinician Challenge Workers Compensation claim is predictor of worse outcome Workers comp patients self assessed function/pain worse than matched nonworkers comp patients Workers comp patients have lower expectations

Brief Outline

- Rotator Cuff Tears
- Labral Tears
- Proximal Biceps Injury

Anatomy & Biomechanics

- > Supraspinatus- initiates humeral abduction
- > Infraspinatus- humeral external rotation
- > Teres Minor- humeral external rotation
- Subscapularis- humeral internal rotation and humeral head depression

Anatomy & Biomechanics

- Dynamic Stability
 - Compresses humeral head in glenoid to provide a fulcrum for active motion
 - > Resists shear of deltoid abduction
 - > Mechanical block to dislocation

Diagnosis

- Exam
 - > Strength Testing
 - Supraspinatus
 - Jobe's test pain and weakness
 - Subscapularis
 - Belly press & lift off
 - Infraspinatus
 - External rotation weakness/lag sign
 - Teres minor
 - Hornblowers

Diagnosis

- Imaging
 - > MRI
 - Most useful
 - Tear partial vs. full
 Atrophy/Fatty Infiltrate
 - Retraction
 - Concomitant pathology
 - > Dynamic Ultrasound
 - · pacemaker/shoulder replacement
 - > CT arthrogram

Partial versus Full thickness tears

- Partial thickness tear also partially intact
 - > Better prognosis
 - Most do not need repair
- Full thickness tear
 - > Will progress (enlarge)
 - Muscle atrophy/fatty degeneration
 - > Poorer function

Non-operative Management Partial tears

- Physical therapy
 - > Phase I- symptom control
 - > Phase II- stretch
 - > Phase III- strengthen
 - Scapular stabilizers progressing to provocative RTC strengthening
 - > Phase IV- return to activity

Operative repair

- Early Operative Intervention Likely Leads to Improved Outcomes
 - > Schaefer et al (CORR 2002); Repaired Isolated Supraspinatus Tears → Improvement in Strength Correlated with Muscle Belly Degeneration
 - Harryman et al (JBJS 1991); Functional outcome of repair closely correlated with size of re-tear defect determined by ultrasound. Large tears without re-tear had same outcomes as small tears

Open versus Arthroscopic

- Open repair (Gold Standard)
 - > Stronger fixation
 - Newer studies question
 - > Risk deltoid dehiscense
- Arthroscopic
 - > Evaluate & treat other injuries
 - > Do NOT need to take down deltoid
 - > Less pain???
 - > Faster recovery???
 - > Fixation strength

Post operative rehab

- About as many protocols as surgeons
- My protocol
 - > 6 weeks sling with abductor pillow; initiate pendulums after week 2

 - Check every 2 weeks if too still start passive stretching
 After 6 weeks sling off start stretching and scapular
 - Initiate RTC strengthening once motion near normal usually week 9-10
- Mounting evidence better healing rates with minimal movement and strain for first 6 weeks

Workers Comp Outcomes

- Multiple studies report poorer outcomes in workers compensation patients
 - > Watson & Sonnabend JBJS'02 reported pain
 - Henn et.al. JBJS'08 workers comp claim independent variable for worse outcome
 - Secondary variables: secondary gain, psychosocial issues, work demands, comorbidities,

> Holtby et. al. JSES'10 workers comp do worse but at least they are much better than if not repaired

Workers Comp Outcomes

- Cuff & Pupello JSES'12
 - > Non-compliance of workers comp patients correlated with worse outcomes
 - WC 52% noncompliance
 - · Non-WC 4% noncompliance
 - > Within WC population compliant patients had better outcomes

		WC Compliant	WC Non-compliant
	ASES score*	73.1	48.4
	SST score^	7.9	4.3
nerican Shi	ulder & Elbow Socity, *SST-Simple Sho Healing rate	75%	50%

Labral Tears

- Bankart (anterior inferior)
- Posterior
- SLAP (superior labrum anterior posterior)

Bankart tear (anterior inferior labrum)

Laxity vs. Instability

Laxity

Increased glenohumeral excursion without perceived dysfunction

A pathologic condition secondary to increased joint excursion

Mechanism of Injury

Forced Abduction/External Rotation

Anatomy and Biomechanics

- Static
 - Glenohumeral congruity
 - > Labrum
 - Glenohumeral ligaments
 - > Negative pressure
- Dynamic
 - Scapulohumeral rhythm
 - > Rotator cuff
 - Joint compression
 - > Biceps tendon

Age Matters

- - > 90+% recurrence
- 20-40
 - > 35-74% recurrence
- >40
 - > 10% recurrence
 - > High rate RTC tear

Evaluation

- - > Neuro status
 - Direction of instability
 - > Apprehension
 - > Rotator cuff
- Radiologic
 - > X-ray-axillary view
 - > CT-best for fracture
 - > MRI arthrogram

Management

- Non-operative
 - Sling- not shown to prevent recurrence
 - Therapy- strengthen dynamic stabilizers and restore scapulo-thoracic rhythm

Management

- Operative
 - > Bankart repair
 - Open
 - Anatomic repair
 - · Subscapularis takedown
 - INCREASED STIFFNESS
 - Arthroscopic
 - Preserve subscapularis
 - Recurrence rates approaching open results

Bone deficiencies

- Hill-Sachs
 - > Engaging lesions
 - Defect graft;
 Remplissage; glenoid grafting
- Glenoid bone loss
 - > >20% must address
 - > Repair fractures
 - » Bone graft- coracoid vs iliac crest

-

Post-operative rehab

- Similar to rotator cuff
- 6 weeks sling immobilization and pendulums at 2 weeks
- Begin stretching at 6 weeks (avoid passive and manual if possible)
- Strengthening once motion returned; will not release full prior to 5 months

Workers Comp Outcomes

- Hattey et. al. JSES'01
 - Higher rate of recurrence of instability and full functional outcome

Labral Tears

- Bankart (anterior inferior)
- Posterior
- SLAP (superior labrum anterior posterior)

Posterior Instability Acute posterior dislocation Electrocution Often missed-extreme lack of external rotation Treatment Reduction Gunslinger brace

Recurrent Posterior Instability

- Rarely a discrete injury
 - > <25% report injury
- Often due to repetitive microtrauma from axial loads in adducted arm in internal rotation

Soft Tissue/Bone Issues

- Posterior labral tear (reverse Bankart)
- Posterior capsule insufficiency
- Rotator interval insufficiency
- Posterior glenoid bone loss
- Reverse Hill-Sachs
- Glenoid/Humeral Retroversion

Management

- Non-operative
 - Sling- not shown to prevent recurrence
 - Therapy- strengthen dynamic stabilizers and restore scapulo-thoracic rhythm

-		
-		
-		

Surgical Repair Anatomic labral repair Posterior capsular plication

Rotator Intervalspace between subscap & supraspinatus

Rotator interval closure

Post-operative Rehab

- Same as Bankart
- 6 weeks sling immobilization (*possible gunslinger*) and pendulums at 2 weeks
- Begin stretching at 6 weeks (avoid passive and manual if possible, *and sometimes internal rotation stretch*)
- Strengthening once motion returned; will not release full prior to 5 months

Labral Tears

- Bankart (anterior inferior)
- Posterior
- SLAP (superior labrum anterior posterior)

Superior Labrum Anterior Posterior tear

Anatomy

- Biceps attachment to supraglenoid tubercle
 - 5 mm medial to superior rim of glenoid
 - Hyaline cartilage leading to tubercle

Anatomy

- Many anatomic variants of superior labrum (13 to 25%)
 - Rao (2003), Ilahi (2002)
 - "Buford" complex
 - Williams (1994)
 - Bents (2005) 83% correlation with SLAP tear
 - Sublabral hole
 - Meniscoid labrum
 - Davidson (2004)

Classification

- Type I
- > 11% Fraying
- Type II
 - > 41% Detachment of biceps anchor
- Type III
 - 33% Bucket handle tear w/o extension to biceps
- Type IV
 - > 15% Type III with extension into biceps

SLAP Pathophysiology Theories

- Usually a traumatic event
- Compression
 - Fall onto an abducted upper extremity
- Traction
 - Avulsion of superior labrum with traction and biceps contraction
- "Peel-back"
 - Abduction and external rotation: shear force on superior labrum

SLAP Pathophysiology Theories

- Failure of LHB function
 - Subtle shoulder instability leads to biceps overload with failure at the biceps anchor??
 - Repetitive injury to the biceps anchor leads to functional incompetence and secondary capsular overload??

Clinical Assessment Analysis

- Clinical Assessment Meta-analysis, Jones (2007)
 - No one test is superior
 - Original study always had "best" results
 - High variability between independent evaluations of SLAP-specific tests

Study	Sensitivity (%)	Specificity (%)	PPV (%)	NPV (%)
O'Brion ot al ^{10*}	100	08.6	94.6	100
Parentis et al ¹⁰	62.5	50	35.5	75.4
McFarland et al ¹²	47	55	10	91
Stotoon ot al ²⁴	54	31	34	50
Guanche and Jones ²	63	73	87	40
Myora et al**	77.6	11.1	70	14.3
Nakagawa et al ¹⁷	54	60	52	62

"Physical exam cannot be used as the sole basis of a diagnosis of a SLAP lesion"

Imaging

- MRI, Bencardino (2000)
- Correlated MRI findings with arthroscopic findings prospectively in 159 patients
- MRI arthrogram:
 - Sensitivity 89%
 - Specificity 91%
 - Accuracy 90%

Management

- Non-operative
 - Sling- not shown to prevent recurrence
 - Therapy- strengthen dynamic stabilizers and restore scapulo-thoracic rhythm

Surgical Management

- Type I debridement
- Type II repair
- Type III debridement
- Type IV repair
- Biceps tenotomy vs tenodesis

Post-operative Rehab

- Similar to rotator cuff (if cuff repaired concomitantly need to watch for stiffness)
- 6 weeks sling immobilization and pendulums at 2 weeks
- Begin stretching at 6 weeks (avoid passive and manual if possible)
- Strengthening once motion returned; will not release full prior to 5 months

Outcomes

- More of the same
 - > Park & Glousman AJSM'11
 - Return to work WC 57.5%/NWC 96.7%
 - > Verma et. al. JHSS'07
 - WC 42% return to work at previous level
 - 24% re-operation rate
 - Possible traction mechanism vs repetitive use to blame for result discrepancy when compared to athletes

Versus

Proximal Biceps Rupture

- Most tolerate very well with no discernible functional loss
 - Usually 10% flexion & 20% supination
- Cosmetic deformity
- Non-operative low demand older
- Biceps tenodesisyounger high demand

Tenodesis No consensus on best technique Soft tissue (Pittsburgh) Bicipital groove Sub pec

Conclusions

- Soft tissue shoulder injuries are a significant problem in workers comp population
- Workers compensation patients remain challenging despite improvements in diagnosis and treatment

